DSP-2 Library for Simulink
User’s Manual

Author: Darko HERCOG

dsp2lib version: 2.2
Terminal version: 1.5.5
MATLAB version: 7.1 and higher
Date January 11, 2010
Contact: darko.hercog@uni-mb.si
TABLE OF CONTENT

1. **PREFACE** .. 1

2. **DSP-2 CONTROLLER** ... 2

3. **DSP-2 LIBRARY FOR SIMULINK** ... 5
 3.1. **DSP-2 LIBRARY SETUP** ... 6
 3.2. **CREATING A NEW MODEL** .. 7
 3.3. **CODE GENERATION** ... 8
 3.4. **ONLINE CHANGING OF BLOCK PARAMETERS** .. 11
 3.5. **DSP-2 OPTIONS** .. 15
 3.6. **DSP-2 DEMOS** .. 17

4. **DSP-2 BLOCK REFERENCES** ... 19
 4.1. **DSP-2 DEVICE DRIVER BLOCKSET** ... 19
 - **Analog Input** .. 21
 - **Analog Input Oversampling** ... 22
 - **Analog Output** .. 24
 - **Analog Output Differential** ... 25
 - **Digital input** ... 26
 - **Digital Output** .. 27
 - **From Address** ... 28
 - **To Address** ... 29
 - **PRBS** ... 30
 - **Incremental Encoder** .. 31
 - **Modulator** .. 33
 - **PWM** .. 34
 - **To File** .. 35
 - **To Terminal** .. 37
 - **From Terminal** ... 39
 - **Transformations** ... 41
 4.2. **DSP-2 ROBOTIC CONTROLLER DEVICE DRIVER BLOCKSET** 42
 - **Analog Input** .. 43
 - **Analog Output** .. 44
 - **Digital Input** .. 45
 - **Digital Output** .. 46
 - **Encoder** ... 47
 - **Encoder Position Preset** ... 48
 4.3. **DSP-2 PLANTS** .. 50

5. **BLOCKS THAT ARE NOT SUPPORTED WITH EMBEDDED C FORMAT** 51
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Photograph of the DSP-2 controller</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Block scheme of the DSP-2 controller</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>DSP-2 library for Simulink</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Simulink Library Browser</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>new model GUI</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>New Simulink model</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>RTW page</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>Solver page</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>MATLAB command window - Successful completion of RTW build procedure</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>DSP Terminal – Options page</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>Tunable Parameters page in MATLAB 7</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>DSP Terminal – Parameters page</td>
<td>13</td>
</tr>
<tr>
<td>13</td>
<td>Simple Simulink model</td>
<td>14</td>
</tr>
<tr>
<td>14</td>
<td>GUI of Discrete-Time Integrator</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>DSP Terminal Parameters page</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>DSP-2 options (1)</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>DSP-2 options (2)</td>
<td>16</td>
</tr>
<tr>
<td>18</td>
<td>DSP-2 Robotic Controller Options</td>
<td>17</td>
</tr>
<tr>
<td>19</td>
<td>DSP-2 demos</td>
<td>18</td>
</tr>
<tr>
<td>20</td>
<td>DSP-2 device driver blockset</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>GUI of DSP-2 Analog Input block</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>GUI of DSP-2 AI Oversampling block</td>
<td>22</td>
</tr>
<tr>
<td>23</td>
<td>Automatically added objects to the Terminal GUI</td>
<td>23</td>
</tr>
<tr>
<td>24</td>
<td>GUI of DSP-2 Analog Output block</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>GUI of DSP-2 Digital Input block</td>
<td>26</td>
</tr>
<tr>
<td>26</td>
<td>GUI of DSP-2 Digital Output block</td>
<td>27</td>
</tr>
<tr>
<td>27</td>
<td>GUI of DSP-2 From Address block</td>
<td>28</td>
</tr>
<tr>
<td>28</td>
<td>GUI of DSP-2 To Address block</td>
<td>29</td>
</tr>
<tr>
<td>29</td>
<td>GUI of DSP-2 PRBS block</td>
<td>30</td>
</tr>
<tr>
<td>30</td>
<td>GUI of DSP-2 Encoder block</td>
<td>31</td>
</tr>
<tr>
<td>31</td>
<td>GUI of DSP-2 Modulator block</td>
<td>33</td>
</tr>
<tr>
<td>32</td>
<td>GUI of DSP-2 PWM block</td>
<td>34</td>
</tr>
<tr>
<td>33</td>
<td>GUI of DSP-2 To File block</td>
<td>35</td>
</tr>
<tr>
<td>34</td>
<td>GUI of DSP-2 To Terminal block</td>
<td>37</td>
</tr>
<tr>
<td>35</td>
<td>GUI of DSP-2 From Terminal block</td>
<td>39</td>
</tr>
<tr>
<td>36</td>
<td>DSP-2 robotic controller blockset</td>
<td>42</td>
</tr>
<tr>
<td>37</td>
<td>GUI of DSP-2 robotic controller Analog Input block</td>
<td>43</td>
</tr>
<tr>
<td>38</td>
<td>GUI of DSP-2 robotic controller Analog Output block</td>
<td>44</td>
</tr>
<tr>
<td>39</td>
<td>GUI of DSP-2 robotic controller Digital Input block</td>
<td>45</td>
</tr>
<tr>
<td>40</td>
<td>GUI of DSP-2 robotic controller Digital Output block</td>
<td>46</td>
</tr>
<tr>
<td>41</td>
<td>GUI of DSP-2 robotic controller Encoder block</td>
<td>47</td>
</tr>
<tr>
<td>42</td>
<td>GUI of DSP-2 robotic controller Encoder Preset block</td>
<td>48</td>
</tr>
<tr>
<td>43</td>
<td>ADDA interface card</td>
<td>50</td>
</tr>
<tr>
<td>44</td>
<td>DC motor with 3 phase H bridge</td>
<td>50</td>
</tr>
</tbody>
</table>
USED SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/D</td>
<td>Analog to Digital converter</td>
</tr>
<tr>
<td>D/A</td>
<td>Digital to Analog converter</td>
</tr>
<tr>
<td>DSP</td>
<td>Digital Signal Processor</td>
</tr>
<tr>
<td>FPGA</td>
<td>Field Programmable Gate Array</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>ISR</td>
<td>Interrupt Service Routine</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>PWM</td>
<td>Pulse Width Modulation</td>
</tr>
<tr>
<td>RTW</td>
<td>Real-Time Workshop</td>
</tr>
<tr>
<td>TI</td>
<td>Texas Instruments</td>
</tr>
</tbody>
</table>

GUI’s

<table>
<thead>
<tr>
<th>Name</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Options page</td>
<td>DSP Terminal > Options</td>
</tr>
<tr>
<td>Optimization page</td>
<td>Simulink model > Simulation > Configuration Parameters > Optimization</td>
</tr>
<tr>
<td>Parameters page</td>
<td>DSP Terminal > Parameters</td>
</tr>
<tr>
<td>DSP-2 options page (i)</td>
<td>RTW page > category: DSP-2 options (i); i = 1..2</td>
</tr>
<tr>
<td>RTW page</td>
<td>Simulink model > Simulation > Configuration Parameters > Real-Time Workshop</td>
</tr>
<tr>
<td>Solver page</td>
<td>Simulink model > Simulation > Configuration Parameters > Solver</td>
</tr>
<tr>
<td>Text page</td>
<td>DSP Terminal > Text</td>
</tr>
<tr>
<td>Tunable parameters page</td>
<td>Advanced page > Configure… button</td>
</tr>
<tr>
<td>Visual page</td>
<td>DSP Terminal > Visual</td>
</tr>
</tbody>
</table>
1. Preface

The present user's manual describes the *DSP-2 library for Simulink*. *DSP-2 library for Simulink* enables block programming of DSP-2 controller with simulation program MATLAB/Simulink®. The DSP-2 controller was developed at Institute of Robotics on Faculty of Electrical Engineering and Computer Science, University of Maribor, Slovenia. The DSP-2 controller is a high performance, floating point digital signal processor (DSP) based inverter controller, designed primarily to control a three-phase AC motor. The controller is based on Texas Instruments TMS320C32 DSP and Field Programmable Gate Array (FPGA) XCS40-4PQ240C member of Xilinx Spartan Family (more information about DSP-2 controller can be found in DSP-2 user's manual).

Quick overview of each chapter in this user's manual:

Chapter 2 briefly describes main features of DSP-2 controller.

Chapter 3 describes *DSP-2 library for Simulink*. It is explained how to install this library to MATLAB environment, how to generate code from Simulink block diagram and how to change variables or parameters of Simulink model in online mode.

Chapter 4 contains full description of each block of DSP-2 device driver blockset and DSP-2 robotic controller blockset.

Chapter 5 contains a list of Simulink blocks that are not supported with Real-Time workshop Embedded Coder.
2. DSP-2 controller

As mentioned before the DSP-2 controller was developed at Institute of Robotics on Faculty of Electrical Engineering and Computer Science. The DSP-2 controller is a high performance, floating point digital signal processor (DSP) based inverter controller designed primarily to control a three-phase AC motor. The controller is based on Texas Instruments TMS320C32 DSP and Field Programmable Gate Array (FPGA) XCS40-4PQ240C member of Xilinx Spartan Family.

The key features of DSP-2 controller are:

- DSP TMS320C32-60MHz
 - DSP serial interface
 - Two timer general purpose I/O pins
 - DSP MPSD interface for XDS510 emulator
- FLASH 256K x 8 - 70ns
- SRAM 128K x 32 0WS
- channel simultaneous 12bit A/D with serial output
 - Conversion and transfer to register in FPGA 2,6 μs for all four channels
 - One channel with unipolar input range 0 to 4.095 V or 0 to 40,95 mA with 100 OHM shunt resistor
 - Two channels with bipolar input range -2.048 V to 2.047 V or -20,48 mA to 20.47 mA with 100 OHM shunt resistor
 - One channel with input multiplexer to select one of eight voltage input signals
 - First order input RC filters (time constant 33 μs for i1 and i3 and 100 μs for udc)
- Two channel 12bit D/A converter with serial input and unipolar output 0 to 4 V
- RS232 full duplex interface with fixed Baud Rate (57600 b/s, 8bits, 1stop, No parity)
- RS485 interface (not implemented in this firmware version (April 17, 2000))
- RS422 receiver for incremental encoder
- Three logic inputs and logic one output – all optically isolated (12 V passive)
- Bridge protection circuit
 - Interlock between bottom and top IGBT activation and dead time
 - Minimum pulse width, minimum pause width
 - In the presence of the fault signal the bridge is shut down unconditionally
- Three phase synchronous pulse width modulator
 - Twelve bit up/down counter for triangle generation
 - Symmetrical output pulses
- 66.6 ns time resolution
- generates interrupt pulses ones or twice in one modulator period
- Incremental encoder speed measurement with improved MT method
 - 66.6 ns time resolution
 - Position register contain position increment during sampling period
 - Time register contain relative time (in one modulator period) of last position change
 - Booth registers are saved on interrupt and are available until next interrupt
- Stand alone operation. Program is preloaded in FLASH.
- Operation with personal computer
 - Code Composer software development environment
- Standard RS232 serial interface (57600 Bd) and Terminal software
- MPSD interface for XDS510 emulator
- Multipoint communications RS485 and CAN
- Controller dimensions 161 x 130 mm

More about DSP-2 controller can be found in DSP-2 user's manual.

Figure 1: Photograph of the DSP-2 controller
Figure 2: Block scheme of the DSP-2 controller
3. DSP-2 library for Simulink

After successful installation of the DSP-2 library (installation process is explained in chapter 3.1), this library can be opened with `dsp2lib` command in MATLAB command window. DSP-2 library will appear (Figure 3). It contains the following blocks:

- **Basic Blockset**: subsystem contains the DSP-2 device driver blockset (Figure 20);
- **Robotic Blockset**: Subsystem contains Simulink blocks for DSP-2 robotic controller (Figure 36);
- **Doc**: DSP-2 documentations in pdf format;
- **Demos**: link to DSP-2 basic examples;
- **New model**: more about this option can be found in chapter 3.2 on page 7;
- **About**: general information’s about *DSP-2 library for Simulink*;

![DSP-2 Library for Simulink](image)

Figure 3: DSP-2 library for Simulink

Note: Blocks in *basic* and *robotic blockset* can also be accessed in Simulink Library Browser. Just open the Simulink and click on plus sign near *DSP-2 controller* text (Figure 4).
3.1. DSP-2 library setup

Before the installation of DSP-2 library for Simulink, the following software must have been installed on personal computer:

- MATLAB® 7.1 or above
- Real-Time Workshop®
- Real-Time Embedded Coder®
- TI compiler for C3x4x family of DSP processors (Code Composer)
Installation process

Put CD with DSP-2 library in your CD drive. After a while setup GUI will appear. It is recommended, that you select default settings in all GUI’s that will appear in setup process. Setup program will copy all program files and documentations to C:\FERI\dsp2lib\matlab6p5 folder. The shortcut to DSP Terminal will be created on desktop.

Deinstallation process

In Control panel select Add or Remove Programs. In Add or Remove Programs window find DSP-2 Library for Simulink, and select Remove.

3.2. Creating a new model

If you want to build a new Simulink model, which will target DSP-2 controller, it is recommended that you double click the block New Model in the DSP-2 library. After this GUI in which you must enter new model name will appear (Figure 5). All the model parameters will be initialized so that the Build process will successfully generate executable code suitable for DSP-2 controller from Simulink model.

![Figure 5: new model GUI](image)

After entering model name, new Simulink model will appear (Figure 6). Now you can add DSP-2 blocks or built-in Simulink blocks in new Simulink model.
3.3. Code generation

How to generate executable code from Simulink model? Just open RTW page (Figure 8). If you created a new model as described in chapter 3.2, then all parameters are predefined so, that you just click on Build button and code generation process will start. Otherwise you must set the following parameters:

Real-Time Workshop page:
On RTW page in Category option select Target configuration. The Category section will appear. Set parameters to the following values:

- System target file: ert_dsp2.tlc
- Template makefile: ert_dsp2.tmf
- Make command: make_rtw

Solver page:

Simulation time:
- Start time: \(0\)
- Stop time: \(\text{inf}\)

Solver options:
- Type: **Fixed-step**
- **Solver:** discrete (no continuous states). Note: In this version, you can also use continuous blocks in Simulink model. If such blocks are placed in the model, then you have to select one of the solvers in 'Solver' popup. Code with continuous blocks is time consuming! Therefore Simulink models with only discrete blocks are highly recommended.

- Fixed step size: this parameter define **interrupt period**. It can be set to 50e-6 or greater, but smaller than 500 µs.

- Tasking mode for periodic sample time: **Single Tasking**

![Configuration Parameters: temp/Configuration](image)

Figure 7: RTW page
When all the mentioned parameters are set to the correct values, you can start a build process with single click on Build button on RTW page. After successful compilation the following message in MATLAB command window will appear (Figure 9).

```
### Successful completion of the ERT code generation process for DSP-2 controller!
```

Now you must run the DSP Terminal (the shortcut is located on the desktop) to download generated code to DSP-2 controller. In DSP Terminal Options page (1) (Figure 10) you can navigate to directory in which the generated code is located. Note that generated code appears with extension .hex. Select appropriate file and press Download button to download code to DSP-2 controller. If the download is not possible, first reset the DSP-2 controller with Reset button.

If an option Download generated code to the DSP-2 controller on the RTW options page (1) (Figure 16) is selected, then downloading process is automatically invoked.
DSP-2 library in combination with DSP Terminal enables online changing of the Simulink block parameters, while the code is executed on the DSP-2 controller. Parameters of blocks, which are placed in Simulink model, must be stored in local or global variable in MATLAB workspace as real scalar values.

Which parameters are changeable in online mode depends on Inline parameters button on Optimization page. If the Inline Parameters button is selected, than you can define which parameters you want to tune in online mode. This can be done on Tunable parameters page (Figure 11). This page appears, if you select: Configure... button on Optimization page. The list of MATLAB workspace variables is placed on the left side of the Model Parameter Configuration window (Figure 11). Select the variable which you want to change in online mode and click Add to Table... button to add parameter to Global (tunable) parameters table. Parameters Storage Class and Storage type qualifier leave to the default values.
Because an example is the best way to understand the theory of operation, an example is presented in the subsection.

Figure 11: Tunable Parameters page
Example

In this example we'll show how to define exported parameters. We have a Simulink model shown in Figure 13. In Discrete Time integrator we define parameters, as shown in Figure 14 (the parameters that we want to export are in GUI of Discrete Time Integrator signed as IC, LL, and UL). If we want to change these parameters in online mode, we must add these parameters to Tunable parameters page (Figure 11). Note that parameters UL, LL and IC must be defined in MATLAB workspace, before you start build procedure. In our example this parameters has the following values: IC=50; UL=100; LL=0;
Now we can build the code from Simulink model and download the generated code to DSP-2 controller. After a few seconds we can see, that in DSP Terminal Parameters page the same parameters, as we assigned in Tunable parameters page (Figure 15), appear. Now you can change parameters values (if this is not possible use Unlock button), by entering a different value to Value cell near parameter Name cell, while the generated code is executing on the DSP-2 controller. In DSP Terminal visual page you can observe effects of changes.
3.5. DSP-2 options

In this section some additional DSP-2 options are explained. These options are placed on the RTW options page.

DSP-2 options (1) (Figure 16):

- **Download generated code to the DSP-2 controller**: if this option is selected, then DSP Terminal is automatically invoked when RTW terminates with the code generation process;
- **Create LabVIEW virtual instrument**: If LabVIEW 7.0+ and DSP-2 add-on toolkit for LabVIEW are installed on PC, LabVIEW virtual instrument will be automatically created during executable code generation. More information’s about this option can be found in *LabVIEW virtual instrument for DSP-2 controller* document.
- **Show Exported Signals in DSP Terminal**: if this option is selected then all Simulink signals that are assigned as Exported Signals will appear in DSP Terminal GUI.
- All other options on this page are Simulink built-in options, therefore explanation of these options can be found in the Simulink documentation.

DSP-2 options (2) (Figure 17)
Individual options of this page are explained in the description of the related block.

DSP-2 Robotic Controller options (Figure 18)

These options are explained in DSP-2 robotic controller device driver blockset section on page 42.

Figure 16: DSP-2 options (1)

Figure 17: DSP-2 options (2)
3.6. DSP-2 demos

DSP-2 Library for Simulink contains a set of Simulink demo models. These demos are available at MATLAB demos in the Blocksets section (Figure 19).

To access DSP-2 demos, enter demos in MATLAB command window and then navigate to Blocksets -> DSP-2 Library for Simulink (Figure 19).
DSP-2 Library for Simulink

DSP-2 Library for Simulink integrates MATLAB and Simulink with DSP-2 controller. The software suite lets you develop and validate digital control or signal processing algorithms from concept through code and automates rapid prototyping on your DSP-2 controller.

Figure 19: DSP-2 demos
4. DSP-2 block references

4.1. DSP-2 device driver blockset

In the following subsections detailed description of individual DSP-2 device driver blocks are explained.
DSP-2 device driver blockset contains the following blocks:

- Analog Input
- Analog Input Oversampling
- Analog Output
- Analog Output Differential
- Digital Input
- Digital Output
- From Address
- To Address
- PRBS
- Incremental Encoder
- Modulator
- PWM
- To File
- To Terminal
- From Terminal
- Transformation blocks
Analog Input

Description: DSP-2 controller has three fast analog inputs (signed with 0, 1, 2 in GUI) and one “slow” analog input, which has an 8/1 multiplexer placed on its input (signed with 3[0] to 3[7] in GUI). Algorithm of this block is made so, that at the start of each ISR DSP performs sampling of all three fast analog inputs and one of eight signals that are connected to multiplexer. In each interrupt, sampling of different port of “slow” analog input is executed. Because multiplexer type is 8/1, that means, that at every 8-th interrupt sampling on the same port of »slow« analog input is performed. Voltage ranges of analog inputs are shown in table below (Table 1). All A/D converters are 12-bit, that means, that on output of A/D converter we get a unipolar input range signal from 0 to 4095 quants, while at bipolar from –2048 to 2047 quants. On the output of this block we get value of quants stated in table below.

![Figure 21: GUI of DSP-2 Analog Input block](image)

<table>
<thead>
<tr>
<th>DSP-2 analog input</th>
<th>DSP-2 input range [V]</th>
<th>A/D converter output [quant]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 to 4.095</td>
<td>0 to 4095</td>
</tr>
<tr>
<td>1</td>
<td>-2.048 to 2.047</td>
<td>-2048 to 2047</td>
</tr>
<tr>
<td>2</td>
<td>-2.048 to 2.047</td>
<td>-2048 to 2047</td>
</tr>
<tr>
<td>3[0] to 3[7]</td>
<td>-2.048 to 2.047</td>
<td>-2048 to 2047</td>
</tr>
</tbody>
</table>

Parameters:

- **Analog input**
 Analog input, from which DSP reads data

- **Sample time**
 Sample time must be an integer multiple of the base sample time (*Fixed sample time* parameter).
Analog Input Oversampling

Description: Analog Input Oversampling block enables oversampling of the signals connected to the analog inputs 0, 1, 2 of DSP-2 controller. Oversampling means that these signals are measured n times during one period of PWM signal.

Outputs: Outputs AIX (X=1, 2)

Output AIX (X=1,2) is oversampled value of the signal connected to Analog Input X. Oversampling means that the signal is measured n times during one period of PWM signal. Output AIX (X=1, 2) is the vector with n elements. Dimension of this vector is defined with ‘Oversampling Factor’ parameter in block GUI.

Parameters: Analog Input X Name (X=1, 2)

For each output channel, the user can assign custom name. This name will appear in Terminal GUI after executable code deploying on the DSP-2 target.
Analog Input X Gain (X=1, 2)

Each sampled value in analog input channel X (X=1, 2) can be scaled with parameter Gain.

Oversampling Factor

Oversampling factor defines how many times the signal will be measured in one period of PWM signal.

- Parameter range: 1 < Oversampling Factor < 8
- Default value: 1

Note: In the 'Oversampling Factor' field the user can enter the variable name. If the variable is not yet defined in MATLAB workspace, the size of each output vectors will be automatically set to 1.

Sample time

Sample time must be an integer multiple of the base sample time (Fixed sample time parameter).

Additional notes

After deploying executable code, generated from Simulink model which contains 'DSP-2 Analog Input Oversampling' block, one numerical control ('OS MODE') and two numerical indicators automatically appear in DSP Terminal GUI (Figure 23). The names of indicators are equal to the names entered in Analog Input X Name (X =1, 2) field in block GUI.

If the variable 'OS MODE' (Oversampling Mode) is set to 0 then all in graph presented variables are sampled on the DSP-2 controller with the 'basic sampling period'. This period is equal to 'Fixed step size' parameter in Simulink model.

If the variable 'OS MODE' (Oversampling Mode) is set to 1 then all in graph presented variables are sampled with the 'oversampling period'. This period is defined as:

\[
\text{oversampling period} = \frac{\text{basic sampling period}}{\text{oversampling factor}}
\]

Note: If 'OS MODE' is set to 0, this does not mean, that the block output vectors are empty. Oversampling is executing independent from 'OS MODE' variable! If 'OS MODE' is set to 0, then all in graph presented variables are sampled with 'basic sampling period'.

Figure 23: Automatically added objects to the Terminal GUI
Analog Output

Description: DSP-2 controller has only two analog outputs. With parameter *Analog Output* (Figure 24) can be selected, on which output DSP sends block will input data. Both D/A converters are 12-bit and have the output range from 0 to 4.095V. If block input signal is greater than 4095 quants, or smaller than 0, the signal is limited to 4095 or 0 respectively.

Caution: If at least one of the DSP-2 Analog Output block exists in the Simulink model, than block AO_DIFF is not allowed to be in the model.

![Figure 24: GUI of DSP-2 Analog Output block](image)

<table>
<thead>
<tr>
<th>DSP-2 analog output</th>
<th>DSP-2 analog output range [quants]</th>
<th>D/A converter output [V]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 to 4.095</td>
<td>0 to 4.095</td>
</tr>
<tr>
<td>1</td>
<td>0 to 4.095</td>
<td>0 to 4.095</td>
</tr>
</tbody>
</table>

Parameters: *Analog output*

We can select to which analog output on DSP-2 controller, DSP will send block input data.

Show input:

This option is used only in the simulation. If option is selected, than block input appears. In the simulation block input values are copied to the block output.

Sample time:

Sample time must be an integer multiply of the base sample time (*Fixed step size* parameter). If sample time is set to -1, then sample time is inherited from driving block. Default value is '-1'.
Analog Output Differential

Description: Block Analog Output Differential enables bipolar analog output generation on the AOUT port of the DSP-2 controller.

Caution: If this block exists in the Simulink model, than block Analog Output (DSP-2 AO) is not allowed to be in the model.

| Table 3: Analog Output Differential output range |
|-----------------------------------|---------------------------------|-------------------|
| DSP-2 analog output | Block input range [quants] | DSP-2 output range [V] |
| AOUT | -4096 to 4095 | -8 to 8 |

Parameters: None.
Digital input

Description: Figure 25 shows GUI of DSP-2 Digital Input block. DSP-2 controller has 3 optically isolated logical inputs. Which input to use, can be selected with the parameter *Digital input*. On the output of this block appears the signal, which has the logical value '0' or '1'.

![Figure 25: GUI of DSP-2 Digital Input block](image)

Parameters:

- **Digital input**

 Digital input of DSP-2 controller, from which DSP gets data

- **Show input**

 The meaning of this parameter is the same as in DSP-2 Analog Input block

- **Sample time**

 Sample time must be an integer multiple of the base sample time (*Fixed sample time* parameter).
Digital Output

Description: Figure 26 shows the GUI of the digital output block. DSP-2 controller has only one optically isolated logic output. In the GUI of this block you can set the following parameters: *Digital output*, *Threshold* and *Operation*. The value of the output signal is depending of height of the input signal, operation and threshold.

![Figure 26: GUI of DSP-2 Digital Output block](image)

Parameters:

- **Digital output**: Select to which digital output DSP will sends data
- **Operation**
 - **Greater**: If the input signal is greater than the threshold, then the output is set to '1' else to '0'
 - **Smaller**: If the input signal is smaller than the threshold, then the output is set to '1' else to '0'
- **Threshold**: Threshold must be a scalar real number. The meaning of this parameter is explained in *Operation* parameter.
- **Sample time**: Sample time must be an integer multiply of the base sample time (*Fixed step size* parameter). If the sample time is set to -1, then the sample time is inherited from the driving block. Default value is -1.
From Address

Description: Block DSP-2 From Address (Figure 27) enables digital signal processor to get the data from the address in memory. In GUI of DSP-2 From Address block you can set two parameters: Address and Initial value. We can select Address only from drop down menu, because this disables input of the wrong address. Parameter Initial value defines the value, to which the selected address is set in the initialization stage of the DSP-2 controller. Default value of mentioned parameter is 0.

![Block Parameters: From Address](image)

Figure 27: GUI of DSP-2 From Address block

Parameters: Address

Address in DSP-2 memory, from which DSP gets data.

Initial value

The value to which DSP initializes address (selected by Address parameter) in DSP-2 memory in the initialization stage of DSP-2 controller.

Sample time

Sample time must be an integer multiple of the base sample time (Fixed sample time parameter).
To Address

Description: This block is similar to DSP-2 From Address block with one exception. This block is sink block, and enables digital signal processor to store the block input value to the address specified in the parameter *Address* in "float" format (Figure 28).

![Figure 28: GUI of DSP-2 To Address block](image)

Parameters:

Address

Address in DSP-2 memory, to which DSP stores the block input data

Sample time

Sample time must be an integer multiply of the base sample time (*Fixed step size* parameter). If the sample time is set to -1, then the sample time is inherited from the driving block. Default value is '-1'.
PRBS

Description: PRBS block generates Pseudo Random Bipolar Sequence, which is mainly used in the system identification. In GUI you can set the following parameters: *Amplitude*, *Mean value* and *Sample time*.

![GUI of DSP-2 PRBS block](image)

Figure 29: GUI of DSP-2 PRBS block

Parameters:

- **Amplitude**

 Parameter *Amplitude* defines amplitude of generated prbs signal. Generated signal has two output states:

 - *Mean value + Amplitude*
 - *Mean value - Amplitude*

- **Mean value**

 Mean value of the generated prbs signal

- **Sample time**

 Sample time must be an integer multiple of the base sample time (*Fixed sample time* parameter).
Incremental Encoder

Description: Block DSP-2_ENC enables sampling of the position and speed of an incremental encoder that is connected to DSP-2 controller. Figure 30 shows the GUI of DSP-2 Encoder block. In this GUI you can set two parameters: Mode and Gain. The meaning of these parameters is explained in Parameters section below.

To ensure the correct operation of incremental encoder, you must set parameter Num of pulses per revolution, which is located on RTW Options page (2) (Figure 17). This parameter appears only, if DSP-2 target is selected. As the name of the parameter says, you must set the number of pulses that appear on the output of the encoder in one revolution. Default value of this parameter is set to 10000.

Parameters:

Mode

- **Speed**: if "speed" is selected then speed in rad/s (radian/second) of incremental encoder appears on the output of this block
- **Position**: if "Position" is select then the position of incremental encoder (in radians) appears on the output of block

Gain

With parameter Gain we can scale speed or position to the desired units.

Sample time

Sample time must be an integer multiply of the base sample time (Fixed step size parameter). If the sample time is set to -1, then the sample time is inherited from the driving block. Default value is '-1'.
Modulator

Description: Block *Modulator* transforms the desired voltage vector, which is given in a-b system of coordinates, to the relative time length of transistors conduction. Desired voltage vector is given with two inputs, while calculated switching times appear on the output of the block. This block is used in combination with DSP-2 PWM block. You can connect outputs of DSP-2 Modulator with T1, T2 and T3 inputs of the DSP-2 PWM block.

![Figure 31: GUI of DSP-2 Modulator block](image)

Parameters: None.
PWM

Description: Block DSP-2 PWM (Figure 32) has only one parameter Enable level. When the value of the input signal, which is connected to input EN, is greater than the mentioned parameter, the pulse width modulator, which is located in FPGA, starts working. In each ISR the values of T1, T2 and T3 inputs of this block are transferred to registers W_MOD_T1, W_MOD_T2, and W_MOD_T3 (look at DSP-2 User’s guide) of PWM.

Period of the PWM is equal to the half of the interrupt period (Fixed Step Size on the Solver page)!!! Input ranges of T1, T2 and T3 inputs are from 0 to TiMAX, where TiMAX can be calculated from the following equation:

\[T_{i\text{MAX}} = \frac{\text{Interrupt period}}{2 \cdot 66.6 \cdot 10^{-9}} \quad i = 1, 2, 3 \]

When the output of the PWM is set to “1”, the upper transistor is active, and at the value “0” the lower transistor is active. Immediate transition between the conduction of the upper and the lower IGBT transistor is not allowed. Transistors must be in inactive state for a while. Duration of inactive state or ‘dead time’ can be set with the parameter Modulator dead time in Options page (2) (Figure 17). This option appears only, if the DSP-2 target is selected. Default value of parameter Modulator dead time is set to 40 units (1 unit is 66.6ns).

Parameters: Enable level

Parameter must be a positive scalar value. When the value of input signal, which is connected to the input EN, is greater than parameter Enable level, then PWM starts working.
To File

Description: Figure 33 shows the GUI of DSP-2 To File block. This is an example of dynamic GUI, because content of GUI is changing dynamically depending on parameter *Num of input vars*.

When the signal, which is connected to input EN, becomes greater than the parameter *Enable level*, all block input signals (except of input EN) are stored to temporary buffer on DSP-2 controller. The size of this buffer can be changed with parameter *Buffer size* on *RTW Options page* (Figure 17). Because DSP-2 controller memory size is limited, it is recommended, that this parameter does not exceed 20000. Input signals share out buffer size in equal parts. That means, if you set Buffer *size*=20000 and *Num of input vars*=4, then each input signal occupies 5000 locations in the buffer.

When the buffer is full, the transfer of buffer data from DSP to PC is performed (DSP Terminal program must run on PC!). Buffer data is store in file with the name that is enter in parameter *File name*.

![Figure 33: GUI of DSP-2 To File block](image)
Parameters: **Number of input vars**

Number of block inputs.

Enable level

When the signal, which is connected to the input EN, becomes greater than the parameter Enable level, all block input signals (except of input EN) are temporary stored to the buffer.

File name

The name of the file that holds the block input data.

Format

Block input signals are stored to the buffer and then to the file in the »float« format, therefore parameter Format must be of type %X.Yf, where X is the number of all, and Y number of decimal places.

Decimation

The Decimation parameter is the decimation factor. It can be set to any positive integer \(d \), and allows you to write data to buffer in every \(d \)th interrupt. The default decimation is set to '1'. - writes data to buffer in every ISR.

Var name

The name of input signal
To Terminal

Description: Figure 34 shows GUI of the DSP-2 To Terminal block, which enables sending of the block input data to the serial bus of DSP-2 controller. If DSP Terminal is running on PC, then you can monitor block input data in DSP Terminal Text or Visual page. In GUI you can set the following parameters: Target page of DSP Terminal, Variable name, Format and Unit. All parameters except Target page of DSP Terminal must be entered within single quotes.

![Block Parameters: To Terminal](image)

Parameters: **Target page of DSP Terminal**

- **Text Page:** If this option is selected the value of the block input signal appears in Text page of DSP Terminal.
- **Visual Page:** If this option is selected the value of the block input signal will appears in Visual page of DSP Terminal.

Variable name

The name of the variable that holds the input data.

Format

Block input signal is stored to variable in »float« format, therefore the parameter Format must be of type `%X.Yf`, where X is the number of all, and Y number of decimal places.

Unit

Unit name appears after the variable value.
Example: Let us assume, that we set the block parameters to the following values:

- *Target page of DSP Terminal Variable* = 'Text Page'
- *name* = 'Current',
- *Format* = %3.1f
- *Unit* = 'A'

If in a moment of observation the value of the block input signal is equal to 50, then on the *Text page* of the DSP Terminal appears the next line:

Current=50.0 A
From Terminal

Description: DSP-2 From Terminal (Figure 35) is source block. In combination with DSP Terminal it enables online changing of the variable values. Block has four parameters: *Variable name*, *Initial value*, *Type* and *Unit*.

Block creates new variable with the name equal to *Variable name* parameter. After the code generation and downloading process, in the upper part of DSP Terminal *Visual page*, for each DSP-2 From Terminal block in the Simulink model, the following objects appear (figure below):

- *Option box*: option is disabled
- *Text box* – the same name as we assigned in the parameter *Variable name*, in GUI of DSP-2 From Terminal block, is displayed.
- *Edit box* – the value of the variable at the time of observation is displayed.
- *Text box* - *Unit* - the same name as we assign in the parameter *Unit*, in GUI of DSP-2 From Terminal block is displayed.

Now we can change the variable value, by entering different value in *Edit box*.

![GUI of DSP-2 From Terminal block](image)

Figure 35: GUI of DSP-2 From Terminal block
<table>
<thead>
<tr>
<th>Parameters:</th>
<th>Variable name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>String of alphanumeric characters. Parameter must be entered in single quotes.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>This option is not implemented yet.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Initial value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scalar real number. The value, to which DSP initializes the variable in the initialization stage of DSP-2 controller.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>String of alphanumeric characters. Parameter must be entered in single quotes.</td>
</tr>
</tbody>
</table>
Transformations

Description: DSP-2 library contains blocks for the following transformations:

- **transformation from ab to dq system of coordinates:**

 \[
 \begin{align*}
 d &= \cos(f_i) \cdot a + \sin(f_i) \cdot b \\
 q &= -\sin(f_i) \cdot a + \cos(f_i) \cdot b
 \end{align*}
 \]

- **transformation from dq to ab system of coordinates:**

 \[
 \begin{align*}
 a &= \cos(f_i) \cdot d - \sin(f_i) \cdot q \\
 b &= \sin(f_i) \cdot d + \cos(f_i) \cdot q
 \end{align*}
 \]

- **transformation from 3 phase to 2 phase system of coordinates:**

 \[
 \begin{align*}
 i_a &= i_1 \\
 i_b &= \frac{1}{\sqrt{3}} (2 \cdot i_3 - i_1)
 \end{align*}
 \]

 above transformation equation is valid, if: \(i_1 + i_2 + i_3 = 0 \)

- **Conversion from Degrees to Radians**

 \[
 R = \frac{\pi}{180} \cdot D
 \]

- **Conversion from Radians to Degrees**

 \[
 D = \frac{180}{\pi} \cdot R
 \]

- **Conversion from RPMS to rad/s**

 \[
 rad / s = \frac{\pi}{30} \cdot RPM
 \]

- **Conversion from rad/s to RPMS**

 \[
 RPM = \frac{30}{\pi} \cdot (rad / s)
 \]
4.2. DSP-2 robotic controller device driver blockset

DSP-2 robotic controller blocks can be used in Simulink model only, if DSP-2 robotic controller is attached to the DSP-2 controller!

In the following subsections individual DSP-2 robotic controller blocks are explained.

DSP-2 robotic controller blockset contains the following blocks:

- Analog Input
- Analog Output
- Digital Input
- Digital Output
- Encoder
- Encoder Position Preset
- From Terminal
- To Terminal

NOTE: When you are developing code for DSP-2 robotic controller, the following DSP-2 device driver blocks are not allowed in Simulink model:

- DSP-2 Analog Input/Output
- DSP-2 Digital Input/Output
- DSP-2 CAN Read/Write
- DSP-2 PWM
- DSP-2 PWM2
- DSP-2 Encoder
Analog Input

Description: DSP-2 robotic controller has four 12 bits analog to digital converters (ADC) with the input range from -10 V to 10 V. An output of *Analog Input* block has ranges from -10 V to 10 V.

![Figure 37: GUI of DSP-2 robotic controller Analog Input block](image)

Parameters:

- **Analog input channel**
 Analog input channel of DSP-2 robotic controller, from which DSP-2 controller reads data.

- **Offset port**
 If this option is selected, block input port appears. Value connected to this input port is subtracted from ADC data.

- **Sample time**
 Sample time must be an integer multiple of the base sample time (*Fixed sample time* parameter).
Analog Output

Description: DSP-2 robotic controller has four 12 bit digital to analog converters (DAC), with the output ranges from -10 V to 10 V. With parameter Analog Output (Figure 38) can be selected, on which analog channel of DSP-2 robotic controller, block input data will be send. If the block input signal is greater than 10, or smaller than -10, the input signal is limited to 10 or -10 respectively.

Parameters: Analog output channel

Analog output channel of the DSP-2 robotic controller, to which DSP sends block input data.

Sample Time

Sample time must be an integer multiply of the base sample time (Fixed step size parameter). If sample time is set to -1, then sample time is inherited from driving block. Default value is '-1'.
Digital Input

Description: DSP-2 robotic controller has 16 optically isolated logical inputs. Which input to use, can be selected with the parameter *Digital Input* (Figure 39). On the output of this block, signal with the logical value '0' or '1' appears.

![Digital Input Block](image)

Figure 39: GUI of DSP-2 robotic controller Digital Input block

Parameters:

- **Digital input channel**

 Digital input channel of the DSP-2 robotic controller, from which DSP gets data.

- **Sample time**

 Sample time must be an integer multiple of the base sample time (*Fixed sample time* parameter).
Digital Output

Description: DSP-2 robotic controller has 8 optically isolated logic output. In the GUI of this block (Figure 40) the following parameters can be set: Digital output, Threshold and Operation. The value of the output signal is depending of height of the input signal, operation and threshold parameters.

![Digital Output block](image)

Figure 40: GUI of DSP-2 robotic controller Digital Output block

Parameters: Digital output channel

Select to which digital output channel of DSP-2 robotic controller, DSP will sends data

Operation

Greater: If the input signal is greater than the threshold, then the output is set to '1' else to '0'

Smaller: If the input signal is smaller than the threshold, then the output is set to '1' else to '0'

Threshold

Threshold must be a scalar real number. The meaning of this parameter is explained in Operation parameter.

Sample time

Sample time must be an integer multiply of the base sample time (Fixed step size parameter). If the sample time is set to -1, then the sample time is inherited from the driving block. Default value is -1.
Encoder

Description: Block DSP-2 Encoder enables sampling of the position and speed of incremental encoders that are connected to the DSP-2 robotic controller. In block GUI (Figure 41) you can set two parameters: Encoder and Mode. The meaning of these parameters is explained in Parameters section below.

To ensure the correct operation of incremental encoders, Num of pulses per revolution and Hardware Multiplication parameters, for each connected encoder must have been defined on DSP-2 Robotic Controller options. Note, that these parameters appear only, if the DSP-2 controller target is selected.

![Image: GUI of DSP-2 robotic controller Encoder block](image)

Figure 41: GUI of DSP-2 robotic controller Encoder block

Parameters:

Encoder

Encoder of DSP-2 robotic controller, from which DSP gets data.

Mode

- **Speed**: if "speed" is selected then speed in rad/s (radian/second) of incremental encoder appears on the output of this block.
- **Position**: if "Position" is select then the position of incremental encoder in appears on the output of the block. With the parameter Position Unit the user can define position in radians or in pulses.

Sample time

Sample time must be an integer multiply of the base sample time (Fixed step size parameter). If the sample time is set to -1, then the sample time is inherited from the driving block. Default value is '-1'.

Encoder Position Preset

Description: Block *Encoder Preset* enables encoder i (i=0..3) position preset. In block GUI (Figure 41) you can set two parameters: *Encoder* and *Consider reference signal*. The meaning of these parameters is explained in Parameters section below.

To ensure the correct operation of incremental encoders, *Encoder i Position Preset Value* (i=0..3) and/or *Invert reference signal* parameters, for each connected encoder must have been defined on *DSP-2 Robotic Controller options* (Figure 18). Note, that these parameters appear only, if the DSP-2 controller target is selected.

![Block Parameters: Encoder Position Preset](image)

Figure 42: GUI of DSP-2 robotic controller Encoder Preset block

Parameters:

- **Encoder**

 Encoder of DSP-2 robotic controller

- **Consider reference signal**

 No: If this option is selected, encoder position will be preset, on the positive slope of the block input signal, to the value that is defined in parameter *Encoder i Position Preset Value* (i=1..3). Note: Use this option only, if your encoder does NOT contains reference signal.

 Yes: If this option is selected, encoder position preset mode will be started on the positive slope of the block input signal. Afterwards, encoder position will be preset to the value defined in parameter *Encoder i Position Preset Value* (i=1..3), when the encoder reference signal will appear (disappear).

 Note: If you use this option, and position preset occur immediately after positive slope of block input signal, turn *Invert reference signal*
parameter on *DSP-2 Robotic Controller options* page (Figure 18) to the opposite value.

Sample time

Sample time must be an integer multiply of the base sample time (*Fixed step size* parameter). If the sample time is set to -1, then the sample time is inherited from the driving block. Default value is '-1'.
4.3. DSP-2 Plants

In addition to the DSP-2 learning module, Institute of Robotics provides DSP-2 plants which can be easily connected to DSP-2 learning module. These plants are Buck converter, DC motor (Figure 44), ADDA interface card (Figure 43) etc. Documentation of these plants, which include description of Simulink blocks and description of demonstration examples, could be found on the following internet address:

http://www.ro.feri.uni-mb.si/projekti/dsp2/documentation.htm

Figure 43: ADDA interface card

Figure 44: DC motor with 3 phase H bridge
5. Blocks that are not supported with *Embedded C format*

Code for *Embedded C format* does not support the following blocks:

- **Continuous**
 - No blocks are supported!

- **Discrete**
 - First-Order Hold

- **Functions and tables**
 - MATLAB Fcn
 - Following S-function: M-files or Fortran S-function, and noninlined C-MEX S-functions.

- **Math**
 - Algebraic Constraint
 - Matrix Gain

- **Nonlinear**
 - Rate Limiter

- **Sinks**
 - XY Graph
 - Display

- **Sources**
 - Clock
 - Pulse Generator
 - Ramp
 - Repeating Sequence
 - Signal Generator